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In 1951 D. C. Drucker presented a classic example of .a simple three-

bar systm In which a sigle monotonically-increasing external load produced
an acutal plastic stress reversal with one bar yielding first in tension

and then. in compression. This example is reviewed and built upon. Other

simple examples illustrate general loading, unloading, and reloading of

elastic/plastic structures, shakedown, and lack of uniqueness in contained

plastic deformation.
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I. INTROIIUCTION

SIMPLE EXAMPLES OF COMPLEX There are many complications in applications of plasticity

PHENOMENA IN PLASTICITY theory, particularly in comparison with the linear theory of

elasticity. If these complications are encountered for the first

by time in a "real
= 
problem with large amounts of analysis and co-

Philip G. Hodge, Jr. putation even for an elastic material, the peculiar features of

Professor of Mechanics plastic behavior may be masked, and the probability of undetected

Minneapolis, MN 55455 errors is greatly increased. For this reason, there is an obvious

advantage to discussing plasticity first in terms of simple

ABSTRACT structures, the simpler the better. Of course, If a problem is

too simple, then some essential features of plasticity may not

In 1951 D. C. Drucker presented a classic example of a aim- appear. However, one of the surprising features of plasticity

pie three-bar system In which a single monotonicalty-increaming theory is that so many of its important features can be illustrated

external load produced an actual plastic stress reversal with with problems which are easily comprehended by students in a

one bar yielding first in tension and then in compression. This beginning class in statics.

example is reviewed and built upon. Other simple examples In the present paper we shall illustrate several ot the

illustrate genera] loading, unloading, and reloading of elastic/ features of plasticity theory with two very simple three-ber

plastic structures, shakedowsn, and lack of uniqueness• inonutained statistically Indeterminate trusses, &8 shown in Figs. I and 6.plastic deformation. Specifically, in Sec. 2 we will use the truss of Fig. I to show

Aoce.stl' ror the difference between hardening and perfectly-plastic materials,

N 1- (r'^&[ F A s the effect of including or neglecting elastic strain components.

Ir'C T.,. Section 3 extends these results to unloading and reloading. He then

|J tiri~to Le.A7 exmin* some undesirable effects which may occur when loads are

applied repeatedly. The next two sections illustrate types of

behavior which are drastically different from those encountered in

Z1) 0i"UtiO/ elasticity. In Sec. S we look at the truss In Fig. 8 and show that

Ava.1aLij-tV Codes under a monotonically increasing single load a bar may yield first

jAvail And/or

D1:3t

CIOt
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in tension and then In Compression. Thus proportional "loading- F
i 

- AIfi(E
I)
/L

i  
(4)

does not by any means guarantee proportional "etressing-. Section where A
I is the cross-sectional area and Li is the lenqth of bar i.

6 returns to the truss in Fig. I and shows that a boun4ary-value Although f() could represent an experimentally-obtined stress-

problem that is owell-posed in the theory of elasticity may have strain curve, we will consider here the four piecewise-linear

a non-unique solution in plasticity. The final section of the curvesfmodel shown in Fig. 2. Figure 2a portrays an *elastic/strain-

paper will quote analytic and numerical solutions to more complex hardening- material (E/SM) whoae equations may be written

problems where the same types of responses are observed. 0o a< a a - Kt

t a 0 - Vt + (1 - '/V0Y 0)

2. LOADING OF DIFFERENT PLASTICITY MODELS
where K is the elaStic modulus. F, is the plastic modulus. and o

The defining equations for any problem in continuum or etruc- y
is the yield stress. He define the yield force, elastic stiffness.

tural mechanics come from three sourcess statics, kinematics,

and constitutive. For the truss in Fig. 1, the two statics and plastic stiffness of br I by

equations are obtained from horisontal and vertical equilibrium of Yi 
= 
Amy i kI - AYi /L

I  
k
i
' - Ai6,

1
/1. 6)

point 0: respectively, to obtain the constitutive equation for bar I:

(T
I 
-F }/4-M " H F

1 
+ )/ + F

2 
- V (1) Z/ 0 < F y I ¥l F

1 - k i*
I  17a)

where F
i 

is the tensile force in bar i. The kinematics expresses 8/SB Y i F ri " ki*i 
+ 

yl
(
I - kt'/ki) (7b)

the elongation 9 of each bar in terms of the displacement@ u and Silalacly, the constitutive equation for the .elastic/perfectly-

v of point D, plastic- material il/PP) in Fig. 2b consists of Eq. (ia) for

•
l
-iu 4 wI/IT *

2 - V 3 -(-uo+v)/T (2) 0 oFio< i and

Obviously, we are using a strictly linear theory In writing Eqs. a/FP a I ki Pi Yi (0)

(1) and (2). For the "rigid/strain-hardening6 (R/SH) and *rigid-perfectly-plastic"

In the present section ws are considering only the casm where (P/PF) materials in Figs. 2c and 2d, respectively, the equations are

stress and strain are both increseing functions of time, So that
R/ FI Tj YI e - 0 lid)

we can quite generally Write

0 - fit) (3) P/SH F I Fi I ki'el + Yi (7e}

Tr/PP ei c b Fi t Y (7f)
Therefore, for each bar of the truss we say write
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Lat the three bars of tho trues in Fig. I all have the same Stage 2, bar 2 plastic F - F - kv/

soduli 9 and V', the mame area A, and the same yield stress ays; r 2 k'v * 11 -i/kI (III

the ,eld force in each bar will then have the same val * Y. we V - kv(II/2 . k'/kl - YI k'/k}

define k AE/L. Then the bar stiffneeses are When kv - 2Y bars I and I reach yield with the result

I  
K - k/1 I

2 
- I Stage 2L kv/Y = 2 F1 - F - V r

2 
- I * k/k)

(14}

We consider a deformation-controlled loading program in which V = Y(V7 # I + k'/k)

u - 0 and v is slowly increased It then follows from 3q*. (2) As v is still further increased, all bars will be plastic and the

that solution from now on will he

e
I 

- e - v/i/" ev ( 9) I
1 Stage 3, all plastic r1 - r- k'v/2 - II - k',k)

regardless of which of Eqs. (7) apply, we se that F I 
- P,3 whence r 2 

- kv - Ill - k*/k) (I,)

Eqs. (i) can be written V - k'v(l/7 + 1) 4 (/ + Il)Il - k'/k)

H - 0 ' -
4
IT * F

2  
(10) The Solid curve in Fig. 3 shows the resulting load-deflction curve

We first examine the 3/SW material. For v sufficiently smAll defined by Eqs. (11-15).

ai. bars will he elastic so that (is) applies. Thus ror the 3/PP mode, of rig. lb, the analysis is even simpler.

Stage 1, all elastic F I F I - kv/2 P
2 

- ky bStage I and Stage IL eo, of course, still given by Egqs. (iII 4nd

(12), respectively. In stage 2 bar 2 has the constant value of Y

V " kvil + I// ) (1nc)
and bars I end 3 are elastic. Thus (lie) and (1) lead Imediately to

This stage will reach Its limit when bar 2 yields at kv - Y. At Stage 2. bar 2 plastic F1  F 3 - kv/2 F. -

this point we have 
V (kv1 Y6)

Stag* IL kv/Y I F,- F 3  
Y/2 F 2 . 112) Equations (16) may also he obtained from Igs. (13) by settiei

V - (I + 1/,/)-

k' - 0.

In the next stage bar 2 Is plastic and Is governed by Eq. (7b) Stage 2L again occurs when bare I and 3 reach yield with the

but (7a) still applies to bars I and 3. Thus Eqs. (11) are replaced result

by Stage 2L, all plastic F
1  

3 F
1  

" F
2  

Y V V - (/ * 1)1 (7a)

kvi/ - 2 (17b)

-. * .,A.,ae. - f~. . . . . . . . - -. '., A~.-a
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At this point the perfectly-plastic truss cannot tolerate any For values of the load 105 thn& the yield-point load, the

further increase in load, but can continue to deform indefinitely effect of strain hardening is very small, and it appears quite

with no further load increase. Thus the solution for Stage 3 reasonable to use the 3/PP model as Sn approximation Of the more

consists of eqs. (17) with any value of v greater thn 2T/k. accurate h/SH one. On the other hand, if the applied load is to

The dashed curve in Fig. I shows the load-deformation curve for an he uch larger than V, then the effect of elastic strains becomes

/PP material as defined by Eqs. (11, 12, 16. 17). increasingly less important. and the R/SH model gives a good

If the truss ismadeofael/SH material, it will not be able approximation.

to deform at all until all three bars have reached yield. Thus

Stages I and 2 of the previous models are condensed into a single 3, UNLOADING3 AELO0DING

Stage I with - The her forces are non-unique until Stg~e IL quations (5) are no longer adequate to describe the con-

ic reached ahen they are given by Eqs. 1ll) with v - 0. For any stitutive behavior If the stress In a bar is allowed to both

positive v, then. all three bars are plastic, and the solution is Increase and decrease. Instead, we must formulate them in terms

Stage 2, all plastic l - r3 - V k'v/2 F
2 

- y + k'v of rates or Increments. To this end, at iny given instant we

V k'v(l/4 + 1) + (4 + I)Y j characterize the behavior of a bar as either elastic (2). strain-

The dot-dashed curve in Fig. 3 shoe the resulting load-deflection hardening (S), or perfectly-plastic (PP). Then the rate equations

curve. corresponding to (51 may be written

Finally, the R/PP model predicts sero displacement until o" o - Z (19.)

Stage IL as given by Eqs. (17a) with v - 0. F',r Stage 2 the static 8Ut a.; (19b)

quantities are still given by (i?) with any positive v. The load- F

deflection curve is shown dotted In rig. 3.

Figure 3 is drawn with dimensionless scales with an aEquations (19) do not form a complete description of material
Figue 3in raw wit diensonlss cale wih a abumdbehavior, because we still require rules to tell which set of

ratio k/A' - 0.1. Let us define ths "yield-point load" of the bhvohcseesilrqierlst elwihsto
equations are applicable at any given time. For the PP materialtruss as that value V - V

0 for which the truss becomes very much

more flexible. For the 3/SH model It is given by the last Eq. (141,

and for the other three models it his the precise value Y(/ + I). never exceed the initial yield stress cy. If a - Oy and t is

Therefore, if only V
0 

is required even the simplest R/PP model increasing or if a - -ay and t is decreasing, then the bar is

gives a very good approximation to it. plastic, otherwise it is elastic.



For the SH material, the yield stream does not remain constant. IN, 0* + a, - 0 (19h)

Rather, at any time there exist two numbers s' and o6 which repro- IN, a' - '' - 20 y ilA.Y

sent the current yield streesas. If these are known, we can write Figure 4 shows typical load-unload-reload curves for the three

the syllogism diffeient materials.

IF (0 = AND £ 0) OR to - o AND 0) We consider again the truss in Fig. I with all three bars

(19d) having equal areas, moduli, and yield forces. As a loading program

THEN (PLASTIC) ELSE (ELASTIC)
we hold u - 0, always. The vertical diL.placement v is first

Equation (19d) is supplemented with requirement Increased to 8Y/k, then decreased to -9Y/k, and finally increased

a- 0 a < o 119) to 0. As in the previous section all branches of the constitutive

Equations (19d,.) apply to a PP material if we assign the equations lead to F I F
3 

and R - 0. Therefore, combining the

constant values rate form of the kinematic equatlos with Eqs, (19a-c) .we obtain

the constitutive equations in the form
PP, a' a Oy s - -a y (lof)

For the S3 material it .0 still necessary to foreulate a rule (20)

for the variation of the current yield stresses. We begin by aS I - k.;/2 i2 - k'; (20b)

stating that whenever a bar is elastic its yield stresses do not PP, -i " 0 1 . 0 (20c)

change. Next, we require that during plastic behavior the activeFor the remainder of E. (1 one merely needs to replace a. ,

yield stress remains equal to the her strees an y by, respectively, F,, ae, and Yi*

SM, IF (PLASTIC TENSION) THU a' - a Since we are analysing a displacement-controlled program, it is

IF (PLASTIC COMP3ESEION) TEME a, - a n't necessary to write the equilibrium equations in rate form.

Various models have been suggested far describing the change Rather, we carry out the incremental analysis for forces and

In the "passive yield stress, I.e., the change in a- when 0 - a'. displacements. combine to obtain resultant values of the forces.

We consider here two common models known as *Isotropic* (IN) and and then find the required external force V from the second Eq. (10).

kinematic" (EN) hardening. For en IN material the two yield The solution through Stage 3 is the same as in Sec . 2. and

stresses are always equal in magnitude and opposite in sign, Stage 3L is obtained by setting kv/Y - 8 in Stage 3:

wrereas for a KH material the "elastic range" between the two yield Stage L kv/Y - I FIly - I + 3r 2 /Y - I + Ir (21)

stresses maintains a constant values V/Y - (a'! + 1) + r(34 + 7) (22)

-.. . . ..*~ -- - - - - - -C .
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where we have defined Stage 9L(KH)i kv/Y .0 FI/Y - -r F2/ =I r (28d)

r- k/k (23) The load in each stage is given by the second Eq. (10).

in stage 4 we decrease v which will cause all bars to revert For an IH material the solution will be the same up through

elastic behavior until bar 2 yields in compression. For OH the Stage 3X, and the truss will have the same rates in Stage 4.

total change in F
2 
during stage 4 will be AF 2 

- -2Y. Therefore, However, we must now keep track of the current yield force Y' for

using (20a) for all three bars we may write the total change In each bar. During Stage 2 will increase and remain equal to F
2
'

and during Stage 3 both yield forces will increase with the barsolution during
7 
stage 4 aa

forces. Thus at Stage L the yield forces will be

AF/Y - Avk/¥ - -2 AF/Y - .1 (24)
Stage 3L(IH), tYl - 1 4 3r 2 1 4 7r (29)

Adding these Increments to the values 
at Stage 3L, we obtain

and teme values will continue to hold in Stage 4. Stage 4L will
Stage 4L(Hh tkv/Y - 6 rl/Y - 3r F2 / Y. -1 + 7r (25) occur when P -Y I, hence

In Stage 5 bar 2 is plastic so use (20) for bar l and

Stage 4L(IH)s F1/Y -4r F
2
/y - -(I + ir) kv/Y - 6 - 14r (30)

(2Ob) for bar 2. This stage will and when bar I becomes plastic.
so the total increments are During Stage 5 Y 2 will increase with the magnitude of F

2
, but Yl'

will still be given by the first Eq. (30). At the end of Stage 5
0FI/Y - -1 ivk/Y - -2 ai

2
/Y * -2r (26)

we have

Addition of Eqs. (25) and (26) then gives

Stage SL(IH)M, FI/Y - -(1 + r) kv/Y - 4 - 12r

Stage SL(SH), kv/Y - 4 IP/y - -1 + It i2/Y - -1 + Sr (27) F
2
/T - -(1 + 9r - 2r

2 )

For the rest of the unloading both bars are plastic and take Continuing In this fashion we obtain the solutions for the rest

Eq. 20b). This stage ends when we again reverse v and start to of the prescribed program. The results are summariled in Table 1.

reload. During reloading we enter stages 7, 0, and 9 corresponding If r > 0.0674 for on In material, the yield force in bar I will

to all bars elastic, bar 2 plastic. and all bars plastic respectively, increase to the point that v - 0 during reloading while her I is

The various Polutions are still elastic.

Stage 6L(EH)l kv/Y - -6 P1/Y - -1 - 2r r2/Y - -1 - Sr (28a) The results for a PP material can he obtained from either of

Stage ItKH)i kv/Y - -4 PI/Y - -2r r2/y - - Sr (20b) the above Sr solutions by setting r - 0. or can easily he found

directly. The results are summarized in Table 2.
Stage OL(KH). kv/I - -2 rI/T - I - 2r F2/Y - I - 3r (29c)
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For all solutions the external load V is found by substituting Stage 2L, F
1 

P
3 
-0.6/7Y F

2 
-Y kv/Y- 1.2V2 V 

- 
2.2y (M)

the listed bar forces in the second Eq. (10). Figure 5 shows the When V is decreased from 2.2Y, the changes in both bars will be

resulting loed-displacement curves for the three different materials. elastic. Therefore, it follows froe (20a) and the second Eq. (10)

Results for the rigid/plastic materials will, of course, be very that

similar. AFI-O.Skkv AV2 -kAv iV- (I . I//7)kAv (33

Setting AV - -2.2Y "o reduce V to zero, leads to the values
4. SHAXEDOWN

We consider first an 3/PP material which is subjected to a r ? .77-2.2)Y P2 .(2.2/7-3.4)5
114)

prescribed loading program which continues indefinitely, usually 
kv/Y - 3.4/7 - 4.4

as a repeated cycle. If the loads are always sufficiently small, Since both forces are within the elastic range, this solution is

the structure will remain everywhere elastic, and is of no concern the valid one for Stage L. Further, when V is again increased

in the present context. At the other extreme, if the loads ever to 2.2Y, Eq-. (33) will hold for the entire reloading process,

exceed the yield-point load of the structure, there will be no and the solution at stage 4L will be exactly the same as that at

equilibrium solution. The structure will collapse catastrophically, Stage 2L as given by Eqs. (32). clearly further cycles will simply

and the rest of the loading program will be meaningless. In the alternate between Eqs. (32) and (134) with both bars continuing

present section we are concerned with loading programs between to behave elastically.

these two extreme*, i.e., the loading program includes loads which The above behavior can be suemarized as follows. There is a

exceed the elastic limit but which nowhere exceed the yield-point limited amount of plastic flow at the beginning of the loading

load. process, but after this has taken place the rest of the cycle is

We illustrate various loading programs with regard to the completely elastic. A process with this property is called a

trues in Fig. I. In every came we take all three bars to have the "shakedown" process.

same cross-sectional area and the sem material properties. As an example of a process which does not shake down. suppose

Consider first a program in which 8 - 0, always, and V that after the initial loading to 2.2Y the load V is alternated

oscillates between 0 and 2.21. During the initial increase of V between -2.2T and +2.2Y. Stages I and 2 will be the asme as

Eqs. (11). (12), and (16) apply but stage 2 ends with the limiting before, and the change in Stage 3 will still be given by Eqs. (33).

value of V. Wowever this solution is valid only until SF
2 

- -2Y, which leads to

• __J
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Stage 3l: F (0. 6 - 1)Y P
2 

-Y kv/Y- 1.2/7- 2 V -(0.4 .,') Y (35) elonqation, so that all work done is plastic. Further, since the

Further unloading takes place with bar 2 plastic, hence AF 2 - 0. force has its constant yield value, and since the elongation change

Choosing 6V to bring V to its final value of -2.2Y. using Eq. (20a) is positive in tension and negative in compression, we can write

for Arl, and the second (103 for V, we obtain the increment of plastic work in the form

Stage 4L: Fl- -0.3/hY F
2 
- -Y kv/Y - -0.6,7 V - -2.2Y (36) amp - Y liel (37)

The reloading process is similar. consisting of Stage 5 with In particular, since bar 2 is the only one to yield in the present

all bars elastic and Stage 6 with bar 2 plastic in tension. The example, we may use the middle Eq. (2) to write

results are um.arized in Table a. We observe that the solution a .LAv when bar 2 plastic
SWp "10 (38)

for Stage 6L is exactly the same as the one at Stage 2L, 50 that 0 when bar 2 elastic

this cycle of 4 stages will be exactly repeated in each cycle of Equation (38) shows that plastic work is done during each even-

V from .2.2Y to -2.2Y and back to +2.2Y as given in Table 3a. numbered stage and is always positive. The last column of Table 3a

In particular, the value of the displacement will never exceed shows the cumulative plastic work through Stage 6. Clearly a

1.697Y/k which is less than double the maximmm elastic displacement. further increment of 1.394 Y
2
/k must be added during each additional

At first glance It might appear that this loading program half cycle. Since the capacity of any real material to absorb

was a safe one for the truss since bar I never'yields and the plestic work is limited, the truss will become unserviceable after

displacement is always bounded. However, from a materials point a relatively mall number of cycles. The solid curve in Fig. 6

of view, the process of plastic displacement is not a reversible shows the accumulation of plastic work during the first few cycles.

one. Although the gross displacmnt of bar 2 is the same after A loading program in which this phenomen occurs is called 'alternating

a complete cycle, the tensile plastic behavior in Stage 6 collapse'.

does not -undo- the compressive plastic elongation in Stage 4, In Sec. 2 we concluded that it was reasonable to neglect

but rather superimposes a tensile plastic elongation on it. To hardening at loads lese than the yield-point load, at least for

obtain some insight as to why this behavior Is undesirable, we a single loading. to what extent Is that conclusion valid in

introduce the concept of *plastic work*
.  

relation to shakedown? It turns out that the answer is quite

The differential internal work done on a bar is given quite different depending upon the type of hardening. We consider

generally by di - F de. For an B/PP bar at yield there is no first an S/KH material. As before, bar 1 is always elastic, so

change in the bar force and hence no change in the elastic
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we will be dealing with only two different Incremental solutions the former is a reasonable approximation to the latt parti-

AP
I 

- kiv/2 always (39a) cular, both models predict that the plastic work wil

without bound as the cycles continue.
if

2 
-k~v iV - kivil + l//R) bar 2 elastic (ItbI

The K/Il material behaves quite differently. The increments

-k'iv V *kavir - 1//7 bar 2 Plastic 039c) are still governed by Cqs. (39), but the passive yield force comes

During the Initial loading (39b) will apply with F2 -
Y 

to from (19h) rather than from (19i). The resulting solution is

determine Stage IL, then 139c) should be used with AV - (1.2 - 0.5/7)Y exactly the same through Stage 3, but Stage IL occurs when F
2 
is

for Stage 2L. Stage 3L is determined from (39b) with AF
2 
- -2Y, equal to the negative of its value at Stage 2L, rather than when

and Stage 4L from (39c) with AV - (-2.4 + /7)Y. Similar reasoning IF -2Y. The net result is that the truss spends more of its

applies to StagesS and 6. The results are summarized in Table lb. unloading time In the elastic Stage 3 and less in the partially-

Since conditions are exactly the seme at Stages 6L and 2L, further plastic Stage 4. The same thing happens during the reloading

cycles will simply repeat the last four lines of Table lb. phase. Therefore, as shown in Table Sc, the solution at Stage 6L

When a bar is plastic, the Incremental work can be written is different from that at Stage 2L, so that the next cycle of

dW - F d. - F i dt - F#/k' dt - dl? /2k-
)  

(40) unloading-reloading will be different. In particular, we note

that the value of F2 at the end of each cycle has increased.

However, to find the plastic work differential 
we most subtract the

elastic differential dW - di2 /2k). it F 
0 

and AF represent the Since this value is the current yield stress of bar 2, a larger

proportion of each succeeding cycle is spent in a fully elastic

beginning value and increment, respectively, 
of r during a plastic

state.
stage, we may write the plastic work increment in the form

Results for the first few cycles are shown in Table Sc and

AWp = 0.5(1/k' - I/k)((r
0 

+ AP)2 - F02 by the dotted curve in Fig. 6. Although bar 2 is plastic during

- (I -r)(AF/k')(F
n 
+ iF/2) part of every cycle, it is apparent that the process is con-

in particular, for bar 2 Sq. (41) becomes verging to an entirely elastic one, and that the total amount of

Awp .1 - t)Av(r 0 
+ .5SAF) (42) plastic work Is finite.

Let us return to the K/PP material and consider a different
The last two columns of Table 3b show the increments and cumulative

loading cycle. We begin In the Same way by increasing V to 2.2Y,
values of the plastic work, and the dashed curve in Fig. 6 shows

but we then superpose an alternating load at 45
e
. Therefore,

the cumulative plastic work over the first few cycles for r - 0.1.
Stages lend 2 are the same as In the previous example, but

Comparing the results for the 3/PP and /IH models we see that
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beginning with Stage 3 the load increments are defined by two stages. Stage 6L is defined by 0 ., and the resulting

AH = -AV = A/., where A is cycled between 0 and 1.Y. complete solution is given in Table 5.

Therefore, Egs. (1) can be written The bar forces are all exactly the same at Stage 6L as they

AFl - AF3 -
A  

AP F + .'1AP
2  

-X (43) were at Stage 2L. Therefore, they will repeat the sane sequence

At the end of Stage 2 bar 2 is plastic, but the upward component of values during each additional cycle of load. However, the

of the diagonal load reduces F2 so that Stage 3 is fully elastic, vertical and horizontal displacements have each increased by

The increments of the three bar forces and two displacement cor- (0.3 + 0.24) Y/k - 0.S83Y/k during the cycle. Clearly they will

ponents are all proportional to Al and are given in the first ices ytesm mutdrn ahscedn yl. Tee

column of Table 4. Although bars I and 3 are both in tension at fore, although at any given instant the truss has at least two

the start of Stage 3, F
1 

is increasing and r3 is decreasing bars elastic and can support the given load, the deformations

during the stage. Stage 3L is determined by bar I reaching its grow indefinitely with time and the truss eventually becomes

tensile yield force when A - weS - 0.2/7)y - 0.517Y. unserviceable. This behavior has been termed 'nc mental

collapse-. A history .,f the displacementT during the first few

In Stage 4 SF
1 = 0 and Egs. (7a) are valid for bars 2 and . cycles is shown in Fig. 7.

Together with (43) this leads to AF
2 " 0, also. The complete Physically, we can observe that If bars I and 2 were both

solution Is shown in column 2 of Table 4. Stage 4 terminates
in plastic tension at the same time the truss would be a mechanism

when k equals its final value of 1.1¥. The complete solution for
capable of a rotation about the end of bar 3 with a - a. Of

Stage 4L. Is given In Table 5.

course this does not occur, but in the course of a complete cycle
We now reduce the diagonal load so that Al is negative. This

bars 1 and 2 are plastic at different times. The net effect at
causes a decrease in Fl so that the truss is again fully elastic.

the end of a complete cycle is a limited mechanisrm motIon

As shown in Table 4. a negative Al increases r and bar 2 will So - iv - 0.583 Y/k. as shown by the detailed analysis.

yield in tension when I - 0.583. The complete solution for the

For this loading program the two stainhardening models areresulting Stage 51. is shown in Table I. In stase 6 AT
2 

- 0

the same. Stage 2, Is again given by the appropriate line fromwhich leads to the same force increment values as in Stage 4

Table 3b or 3c. From then on the equilibrium equations are
(see Table 4). However, bars I and . are now elastic and the

given by (43). Combining the kinematic and constitutive eqiations
corresponding Eqs. (7a) show that Au + AV - 0, whereas in Stage 4

we obtain
Av - 0. Thus, the displacement increments are different in the
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E/ AF, - k (v + Au)/2 4r
2 - iv iF

3 - k(Av - Au)/2 (
4
4a) Thus the net displacement can be written as a geometric series

/SH AF, - k' (v . 4u)/2 6F
2 

- k'Av AF
3 

- I'(iv - Au)/2 (44b) which converges to the final values

Stage 3 is fully elastic and terminatca when bar 1 reaches its u - 1.506Y/k v - 2.912Y/k (45)

yield force, Y. The complete solution for this and subsequent Therefore, at least In this simple example, the intraductlon of

stages are given In Table 6. In Stage 4 we use (44b) for bar 1 atrainhardening leads to finite values of the total displacements

and i44a) for bars 2 and 3. and terminate the stage when A reaches as compared with the infinite values predicted by the E/PP model.

it. maximum value, 1.1y.

Decreasing I in Stage S causes all bars to become elastic again. . REVERSE STRESSING UNDER MONOTONIC WADING

However, the stage does not end until bar 2 reaches its current In the previous sections we have seen various example.

yield stress, Y2' This value is the maximum of previous values where the force ratios between bars will change as one .r ..i.

of F2  i.e., Y2' 1.061 which was attained at Stage 2L. bas becomes plastic, even though the external load in uniformly

Stage 6 continues with bar 2 plastic and ends when A is reduced increasing. Here we present a simple example in which the tatios

to 0. Since Stages 6L and 2L do not have the me" bar forces, if not only change magnitude, but actually change sign. The truss

we want more stages we must find them explicitly. The qualitative in Fig. Ba consists of three numbered vertical bars made of an

description of each cycle is the samei as I Is increased all bars E/PP material and joined to a perfectly rilid horizontal bir.
are elastic at the start but bar I becomes plastic before I reaches The three vertical bers have equal areas A, lengths L and modul E,

1.1Y; as I is decreased all bars are first elastic but bar 2 but are assumed to have different yield stesses given by

becomes plastic before the cycle ends. However each time bar I or yl I y y2 - 20Y Y - 121 (4b]

bar 2 yields its yield force is increased so that during the next
A vertical load P is applied as in,,.cated. it is iincrrcscd

cycle the truss will remain fully elastic until nearer the end of just to its yield-point value, and then decreased to veto. Th ee
the cycle. Table 6 gives the complete results through Stage 14L, are no horizontal loads, and we assume zero horiaontal sotilfn.
corresponding to three complete cycles.

Static equations are obtained by considering vertical and
Of particular interest are the total displacements added

moment equilibrium of the horisontal bar (Fig. Sb):
during each cycle. Using the results of Table 6 it is easy to

show that the ratio of the increase in either u or v to its F, + P2 + 73 I . r r 0.5P (47)

increase in the previous cycle is the constant value n - 0.571636.



22 23

determine v and z. Further, since these bars have aiways been

There are two degrees of kinematic 
freedom which we take to be

elastic, we may use the integrated form directly. Thus

the elongation v of bar 2 and the difference z between the elon-

gations of Lars 3 and 2, Fig. 8c. Clearly z - LS where 0 Is the Stage 2: F
1  2

- .P -2Y F 3 
- SP -Y

(52)

clockwise rotation of the horizontal bar. In terms of these kv - O.5P - 2Y kz = 3Y

variables the bar elongations are This stage will end when bar 3 reaches its yield force 12Y:

el = V - z e2 . v e3 - v + z (48) Stage 2L: PI Y 
¥  

2 9y 3 12Y

The constitutive behavior is given by the rate form of Eqs. (7a) v 9Y/k a - 3Y/k P - 22Y

and (7c). Combining these with Eqs. (48) ve obtain if bars I and 3 both remain plastic, the truss will be at

E/: FI - k(4-i) '2 k v 73 k(; ) (49a) its yield-point load. A formal solution of the equilibrium

/PP: Fi - ty I ir 1  
0 (49b) equations and the middle Eq. (49a) regains the values in (53)

for the bar forces, load, and v, with a still undetermined.
where k =AE/L.

As P is first increased from 0 all three bars are elastic. However, with v - 0, the rate form of Eqs. (48) shows that

and e3 cannot both be positive, hence the inequalities in (49b)

Equations (47) and (49a) in integrated form lead easily to 
the 3

cannot both be satisfied. The same result Is physically obvious
solution

from Fig. Sc. If bar 2 remains rigid, a yield mechanism would

Stage 1: F
1 

- 112 F
2  

4P/12 F3 .IP/12 (50) rotate the horibontal bar about the end of bar 2 which would

v = P/3k z P/4k result in a shortening of bar 1.

Although bar 3 is the most highly stressed, bar 1 will be the The above arguments show that in Stage 3 bar 3 will be

first to yield since its yield force is so much smaller. Thus plastic, but bar I will return to an elastic state. Thus we

Stage I ends with the solution sot F
2 

- 12Y, solve (47) for the remaining forces, solve the

first two (49a) for ; and a, and integrate using Eqs. (S3) as

(51) initial conditions,

v - 4Y/k z " 3Y/k P - 12Y
Stag. 3h F1 - 12 -0.5P F

2
- I .SP-243 F3 - 123

In Stage 2, F 1 
maintains the known value Y, 

so that Eqs. (47)

v - l.5P/k I - 21/k (54)
may be solved directly to 

obtain all bar forces. Bars 2 and 3

are elastic, so the last two Eqs. (49a) are available to kv - .SP - 24Y ka - 2P - 41Y
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The force in bar 1 Is now decreasing, and it will reach its The behavior of this seemingly simple structure becomes even

yield value in compression while bar 2 is still elastic: more complex when a strainhardenlng material is considered. Under

an increasing load the elastic behavior and Stage IL will, ofStage 3l F
1  

- F
2 

-155 F3 125 P 265 (55a)
course, be the same. In Stage 2 bar I will be in plastic tension.

kv/¥ = 15 ks/Y - 11 (5Sb) and the stage will end when bar I reaches its yield Lorce of 12Y.

If the load is maintained at 26Y with bares 1 and 3 remaining Bar I will unload and bar 3 will be in r':astic tension in Stage 3.

plastic, the solution consists of Egs. (55a), kv/Y - 15, and z is Thus far the solution will be only slightly different from the

undetermined with any z > 0 satisfying both relevant inequalities perfectly plastic truss because of the effects of strainhardening

in (49b). Therefore qs. (551 represent the beginning of the when bars I or 3 are plastic.

yield-point solution. The termination of Stage 3 will depend upon the type of

Instead of maintaining P at 26Y, let us immediately reduce hardening. For kinematic hardening bar I will yield in com-

it. In most problems a reversal of the only load will cause all pression when the change in F
1 from Its value at Stage 2L is -2Y

plastic bars to become elastic. However, if we superimpose the which occurs at a load P - 28.9Y. On the other hand, for an

elastic solution (50) with a negative load Increment on Eqs. (55), isotropic hardening material bar I will yield when its torce

the force in bar I will immediately exceed its compressive yield reaches the negative of its previous maximum value at P - 31.2.

strength. Therefore, even though bar I has just reached yield Figure 9 shows the relation between the load P and the

under an increasing load, it will remain at yield when we decrease deflection

the load. The resulting solution is easily found to be 6 - v - 3/2 (Sol

Stage 4i P
1 

- -Y F 
2 

' 0.+ 2 P F
3 (56) of the point of load application. The unloading portion shows

kv - 2Y +0.SP k6 - 11Y unloading from Stage 3L. Part of the difference between the

Clearly no further yielding takes place as P is reduced to curves Is caused by the fact that they show unloading from different

zero. When the truss is fully unloaded it has a met of residual values of the load.

forces and permanent displacements given by In the presence of stainhardening there is no maximum

allowable load. Therefore, instead of reducing the load trimitage 41.: P F
1 
=FJ- -

2 
"25 kv/ - 2 ks/S-Il1 (571

Stage 3L, let us form Stage 4 by continuing t, increase it. bar I

will be in plastic compression, bar 3 in plastic tension, and
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bar 2 will be still elastic with increasing force. The stage will To conclude this section we consider one more loading program

end when Fz reaches itsmaximum value of 20Y. Table 7 shows the in which P is increased until bar 2 just reaches yield and is than

resultinq solutions for both types of hardening at the various decreased to zero. Stage 4L is the same as before, but a new

limit stages, assuming r - 0.1. Stage 5* will result from the unloading. Since fully elastic

In Stage 5, bar 2 will be plastic. If all bars were plastic, unloading would decrease r
I 
which is already at compressive

the bar force increments would be in the same proportion as in yield. Stage 55 will find bar I plastic and bars 2 and 3 elastic.

Stage I when all bars were elastic. In particular, APi would be But the original Stage 5 also had bar I in plastic compression.

positive which would mean that it would no longer be in plastic In other words, once the truss is at Stag& 4L. bar I will continue

compression. Therefore. in Stage 5 bar 1 will again be elastic, to yield in plastic compression whether the load is increased or

while bars 2 and 3 are in plastic tension. Stage SL occurs when decreasedi

bar I reaches its current tensile yield stress. Por the KH

material this will be when iF
I - 2Y, whereas for an II meterial 6. MON-U1IMU.SS

it is not until F, reaches the same magnitude tensile force it we return to the truss of Fig. 1. with the following modi-

had in ceprension at Stage 4L. As shown in Table 7 and Figure 10, ficetioni the bars have unequal yisld forces with YI= l " 
y

the load and displacement at Stage 5L are quite different for the 2 " 3V. We consider a load-controlled program with H - 0 and

different types of hardening. V increasing to the yield-point load. However, we do not wake

flowerer, this difference is really qualitative but not any asssptions of symetry. The bars are all K/PP.

quantitative. To see this, let us continue to increase the load For convenience we shall repeat the defining equations in a

to a value of OY. JrJng this Stage 6 all bars are plastic in form specialized to the particular loading program. The equlli-

tension. Table 7 shows that at the final load all bar forces end brlum equations are

displacements have only very small differences, and the two

curves are virtually indistinguishable in Fig. 10.

Let us review the behavior of bar I of this simple r
I 

- F3 , 0 59b)

strain-hardening truss. As the single load P is monotonically It turns out that bar 2 is always elastic and bars I and 3 are

increased, bar I is first elastic, then yields in plastic tension, either elastic or in plastic tension. Therefore, we may combine

then unloads and yields in plastic compression, then reloads, and the kinematic end constitutive equations to obtain

finally yields for a second time in plastic tension.
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2 kv (59c) Figure Ii shows the unique solution st Stage IL and several

EITHER F
1 

- (k/2)(v u) OR F - 59d) Solutions for Stage :.. For example, fig. Ill shows the largest

allowable value of u. u - Y/k. In this solution bar 3 rotates asEITHER F3  (k/li iv - u) OR F
3 

-
y  

(age)
E rigid body, bar 2 elongates elastically, and bar I elongates

together with inequality conditions which may be written plastically. Notice that any value of u larger than Y/k would

PF S F r
2 

' 
¥  

101 ! 4 (59f) require a shortening of Lui 3 which Is not permissible when it

Equations (591 provide a total of five equations to determIne is yielding in tension. On the other hand any position of point

F ' P, I3, u, and v. D between the limiting ones in Pigs. 11 a and b requires a

Stage 1, of course, is elastic, so we use the first branch lengthening of both bars I and 3 which is consistent with their

in Eqs. (59d, e) to obtain the unique solution both being at tensile yield.

u - 0 2F I- 2F 3 " P2 " kv - (2 - 4)V (60| iathematically. the non-uniqueness was caused by the fact

that two bars yielded simultaneously and reduced one of the

as inS. 2. However,' with the stronger bar 2, bars I and 3equilibrium equations to an identity. In reality, of course,

eld fltof, so that Stage IL is infinitesimal differences between the two bars would make It

u - 0 F
1 

. P
3  

¥  
r
2 

. kv - 2Y V - (a + 4)Y (61) extremely unlikely that they would both yield at exactly the

In Stage 2 bars 1 and 3 are both plastic so the second branch same instant. To examine this facet of the problem, let us mke a

is used in (59d. e). However, this means that (5gb) is satisfied perturbation of the problem by taking Y] - Y - X where x is

identically. We can still use (59a, c) to obtain the unique values positive but otherwise arbitrary. Stages I and IL will be the

same as before, although only bar i will yield at Stage IL. In
F1  F3 =] " 1P " kv - V - r' ¥ (Slal

Stage 2 we now use the first branch of (59e) along with the

but we cannot determine the value of the horizontal displacement u, second branch of (59d). The resulting unique solution consists

although 159f) does provide the bounds of 162a) tr ther with the value

Jul i 8V/k (62b) u - AV/k (541

in particular, Stage 2L at the yield-point load is In particular, at Stage 2L the solution consists of Eqs. (bis)

rl - P 
3 

y  
P2 " kv - 3Y V - (3 /)¥Y (63.) plus

Jul - Y/k (6b) u - Y/k (651
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Fiqure llb shows the resulting configuration. This solution is r, + r k (69)

completely independent of X. provided only that X is positive. If the strainhardening in the two bars is the same. r 1 r
3

In particular, X may be arbitrarily sall so that there is no we obtain the symmetric solution u - 0 as pictured in Fig. Ilc.

practical difference between the two yield forces. On the other hand, if rI - 0, and only bar 3 hardens, we get

However, it Is clear that if we leave Y3 -
Y 
and set u -Y/k as in Sq. (66) and Fig. Ila. Likewise, If only bar 1

Y, = 
Y 

. X, the solution at Stage 2L will consist of Eqs. 163a) hardens the solution in again Eq. (65) . Fig. lib. Clearly

plus unequal non-zero hardening in the two bars can produce any value

u - -¥/k (66) between these two extremes; for example r, - 0.1. r, - 0.05 gives

as pictured in Fig. Ila. This solution, too, is valid for the result u - /3k as shown in rig. lid.

arbitrarily small X. Therefore, although the non-unique solution

of the original problem can be made unique by en arbitrarily small 7. CONCLUSIONS

perturbation, two different perturbations give two very different In the preceding sections we have used two very simple

unique solutions, trustes to illustrate several important concepts in plasticity.

Let us now consider the effect of strainherdening. In doing The ideas presented are not new, of course, nor are ost of the

so we shall allow for different rates of hardening in bars 1 and 3 applications. The truss in Fig. I has been used many times starting

by defining at least as early as 1948 I1, 2, 3)4 to illustrate plastic and

other inelastic behavior. It has also been used to Illustrate some

singular features in plastic design (41. The truss in Sec. 5

Then Eqs. (59d, e) will be replaced by (Fig. gI was first introduced by Drucker (51, and much of the

IF F
1  

Y THEN P, " k(u + V/2 BLE F, - r
1
k(u v)/2 (685) present development was taken from that reference.

IF P
3  

Y THEN F
3  

k(v - u)/2 ELSE r
3 
* rklv - u)/2 (68b) Countless texts on plasticity are available 16, 7. 8, 9, 101

(to name just A few). The basic constitutive equations pro-
Stages I and IL are the same as before, and the complete

tented in Secs. I and 2 can be generalized to two and three
solution for Stages 2 and 2L it easily obtained. Unique values

dimensions and to various structural problems. For the particular
are obtained for ali variables. and if the strainhardening tends

to zero the bar forces and vertical displacement will tend to the

v Numbers in square brackets refer to references collected at
values in vls. e

6
3a1 and S6a. 2e ehall focus our attention on

the end of the paper.
the unique value of u at Stage IL which is given by
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came of a simply-supported circular plate generalizations of the unloads. goes into tension, and eventually yields again in tension.

four stress-strain curves shown in Fig. 2 have been applied 1111. Table 8 shows the bar forces, load, and displacement of the point

Figure 12, taken from Ref. 111 shows the relation between the of load application for the following specific values:

pressure and the displacement of the plate center. The results are Bars 1-4. A - 100 me
2  

Z - 60 GP. R' - 8,GPa

certainly qualitatively similar to those for the three-bar truss Bars S-11, A -1000m K - 240GOP. (71)

as shown in Pig. 3.

Shakedown was first introduced by Helan 121. Many results Y - 10 "Pa

have been presented by Symonds and by eal 113, 14, 102. Important A similar stress reversal he been observed in elastic-plastic

theoretical work has been done by Koster [15, 161. Recently, an torsion of some hollow bars 110, 191. Shaw (20 has numerically

entire book by Gokhfeld and Cherniavsky 2172 has been devoted to solved the torsion of a bar whose cross section is a hollow

the subject. rectangle with fillets. He has shown that plastic behavior starts

The idea that plastic stress reversal can occur evan under on the inner boundary at the fillet. and that the stress vector

a single monotonic loding has many important implications. For there is in the direction of the torque. However, it was first

esample, the somewhat simpler theories known as "plactic-deformationl pointed out in 182J and later numerically verified in 2192 that

theoriea which directly relate stress to strain rather than relating at the limiting plastic torque the stress vector there must be in

their rates is obviously inappropriate when this phenomenon occurs. the opposite direction from the torque. An unfortunate result

Figure 13 shows an eleven-bar truss which does not look par- of this plastic stress reversal is that the Nadal sandhill-oapfilm

ticularly unusual. The top four bere all have the same cross- analogy (212 is no longer applicable.

section and are made of an K/RH material with r - 0.1. However The phenomenon of non-uniqueness was encountered, apparently

their yield forces are for the first time, in the development of a finite-element model

Y S I . V 2 - Y3 - 12¥ Y4 - SY (70) with discontinuous displacement& for use in plane-strain plasticity

122, 231. Since this was a primarily numerical development, itThs bottom bars are all substantially stiffer and have a yield

stress high enough to prevent yielding. As the load P is in- was not clear whether the non-uniqueness was inherent in the E/PP

model, or whether it wa a peculiarity of the particular finite-creased. bar I first yields in tension, then bar 4 reaches its

element modal. The analysis presented in Sec. 8 224. 25) shows
yield force 5Y. Bar I must now unload. and it then yields in

that it Is, indeed, a possibility which must be considered in any
compression. Nest, bar 2 yields in tension, and bar I again

problem using the K/PP model.

_ _ _ _ __ _ _ __ _ _ __ _ -
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Figures 14 and 15 f241 show same other simple examples. The sinqularity of the stiffness matrix, but the resu ting problem

elastic solution for the truss in Fig. 14 is symmetric. It ends would be highly ill-conditioned and might lead to misleading

when the tw side bars reach yield. Further increase of load can results. This problem is certainly worthy of further investigation.

be associated wlth any non-negative change in the lengths of the

vertical bars. Figure 14 shows the two extreme positions where one RERENzCES
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Staqe WY F /Y /Y Stage kv/Y T I2/Y

IL 1 1/2 1
IL 1 1/2 1

2L 2 1 14 +1 r
2L 2 1

3L I + 3r I + 7r

31, I 1 1

4L 6 - 14r -4r -(1 + 7r)
4L 6 0 -I

SL 4 - 12r -(1 + It) -(1 + 9r - 2r
2

5
IL 4 -1 -1

6L -6 -(1 + It - 6r 
2  

-(1 + l9r - 14r
2 )

6L -6 -1 -1

71 -4 30r - 29r
2  

llr r- 
2  

1 + lr - 14r
2

i L -4 0 1

IL 0 2 - r + 6r
2  

1 + 2r -52r
2 

+ 2r
3

IL -2 1 1_8_

9L 0 1 1

Table I

Thre.-bar truss with Isotroplc hardening

Table 2

Thtee-bar perfoctly-plastic truss
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Cycle stage V/Y ky/S 82/y iWpk/y2 £04k/y2 Cycle Stage V/y kv/Y F2/Y lwp/k¥2

0 OL 1.707 1.1,00 1.000 0

0 IL 1.707 1.000 1.000 0 0

2L 2.200 1.697 1.000 0.697 0.697 2L 2.200 1.611 1.061 0.566

1 3L -1,214 -0.303 -1.000 0 0.697 1 3L -1.423 -0.511 -1.061 0.566

4L -2.200 -1.697 -1.000 1.394 2.091 L -2.200 -1.474 -1.157 1.528

SL 1,214 0.303 1.000 0 2.091 SL 1.752 0.840 1.157 1.528

6L 2.200 1.396 1.213 2.121
6L 2,200 1.697 1.000 1.394 3.485

- 2 7L -1.941 -1.030 -1.213 2.121

8L -2.200 -1.351 -1.245 2.475

Table 3a 9L 2.051 1.139 1.245 2.475

IOL 2.200 1.124 1.26) 2.684
Alternating Load. R/PP

3 12L -2.200 -1.309 -1.274 2.806

14L 2.200 1.301 1.280 2.837

4 16L -2.200 -1.296 -1.284 2.918

Cycle Stage V/y kv/Y F 2
/y AM 

k / Y 2  
LV4p

k /
!
2  

I8L 2.200 1.293 1.286 2.941

0 IL 1.707 1.000 1.000 0 0 5 20L -2.200 -1.291 -1.287 2.955

2L 2,200 1.611 1.061 0.566 0.566 22L 2.200 1.290 1.288 2.963

I 3L -1.214 -0.389 -0.939 0 0.566 6 24L -2.200 -1.289 -1.288 2.967

4L -2.200 -1.611 -1.061 1.099 1.666 26L 2.200 1.289 1.288 2.970

SL 1.214 0.389 0.939 0 1.666

6L 2.200 1.611 1.061 1.099 2.765 Table 3c

Table 3b Alternatinq Loads 9/1

Alternating Loads /EN
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All bars bar I bar 2 N =a a . 4
elastic plastic plastic

AF/a I I - 0/2 a a

AF 2 / -/2 0 0 N 0 04S 4
, .^1,/Ak -1/,'2 -1 -l iL 0 .4-. 0 0i <

kA /k I 2 1 a , ., a a *

kAo/AA 2 20 -l,

Table 4 . a

Summary of Incremental solutions .

for diagonl load

.0 0

a A



Cycle Stag e 1 F/ I /Y F /Y F3/Y ku/ kv/V

0 IL - 0.500 1.000 0.500 0 1.000

2L 0 0.805 1.061 0.804 0 1.611

1 3L 0.470 1.000 0.786 0.335 0.665 1.335

4L 1.100 1.072 0.684 -0.483 2.202 1.234

5L 0.457 0.805 1.061 0.159 1:292 1.611

6L 0 0.765 1.116 0.765 0.646 2.177

2 7L 0.740 1.072 0.684 0.025 1.692 1.743

RL 1.200 1.113 0.626 -0.443 2.571 1.685

9L 0.261 0.765 1.118 0.396 1.385 2.177

lOL 0 0.742 1.150 0.742 1.015 2.500

3 11.L 0.894 1.113 0.626 -0.152 2.280 1.976

12L 1.100 1.136 0.593 -0.419 2.782 1.943

13L 0.149 0.742 1.150 0.531 1.437 2.500

14L 0 0.729 1.16 1 0.729 1.226 2.685

Table 6

Diagonal Load: E/SH

stage 1L 2L X0 4L SL 6L 5L'

8am States- z TIE ZT CUT iT? T? CEE

Hardi9 K z x I K 0 K I K I

Fl/7 1 1.3 -0.7 -1.3 -0.5 -1.7 0.0 1.7 2.6 2.7 -2.7 -2.6

F2/y 4 8.1 15.8 18.2 20.0 20.0 26.2 30.3 34.8 34.6 5.3 5.6

F37Y ? 12.0 13.8 14.3 15.4 15.0 27.6 35.3 42.6 42.7 -2.7 -2.8

I6,/Y 4 8.2 15.8 28.1 20.0 20.0 103,3 123.3 167.7 165.5 5.3 5.6

ha/Y 3 3.9 12.7 16.7 26.2 22.0 9".9 122.0 150.5 153.7 22.9 .18.7

p/ 12 21.4 28.9 31.2 33.9 33.3 54.3 67.3 60.0 80.0 0 0

kd N 5.5 1 22.6 22.7 26.6 34.1 31.0 125.1 184.3 242.9 242.4 16.7 14.9

Table 7

Three-bar trustof Figure 8

E - Elastic, T - Plastic tension, C - Plastic Compressin
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Stage IL 2L 31 4L 5L

Ss ... . 1 IT 4T 4T.lC 4T,2T

F(kN) 1.00 1.09 -0.91 -1.17 0:.83 BB
F 2 1.96 2.46 10.59 12.00 16.52

F
3  

0.92 1.23 7.73 8.82 11.07

F
4  

4.31 5.00 8.19 8.96 18.15

F
5  

-1.00 -1.09 0.91 1.17 -0.83

F
6  

" -4.31 -5.00 -8.19 -8.96 -18.15

F
7  

1.41 1.54 -1.29 -1.66 1.17

F9 -1.41 -1.54 1.29 1.66 -1.17

F I 4.30 5.23 17.03 18.16 28.767, u
F 10  6.09 7.07 11.59 12.67 25.67

1
1 1  

2.00 2.17 -1.83 -2 34 1.66

P (kN) 0.73 0.87 2.02 2.25 3.85 Vv

1 n) 0.06 0.12 -1.62 -2.18 2.93

09v (m) 1.16 7.06 8.34 25.89

Table 8 
Fig. 1 Three-bar truss.

Solution for truss of Fig. 13
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a- a-

tanat EE

tori1 EtoiE

OE2

(a) (b)

E/PP

tonrO E' ....... R/PH

2 kv/Y Y

(C) (d) ri. Load-defoKmationcrvs

Fig. 2 Stres-strailcuvs

(c) Riqid/straifl-h..d-il9 (l/SIC)
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so E/KH V/Y

E/KH ...... E/IH

E/IH -- E/PP 4

E/PP

1---------------------- -----

/ I/

1 4Itr - tancre o ulaigadrlaig
Pig 5 oddfraincre orulaigadrlaig
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P/Y~--
L L 30 3L ""L

L0 ( (a)

pL/2-4 20 -2

P

F, F? F
lo- IL E/PP

p /KH

------ E/IH

(c) k8/Y

--- -0 1 > °-- 1 0 10 20 30

Pig. 9 Load-d~flectlon curves.
Fig. a Truss with three vertical bars.

40) Loaded truss

It) StatiCs,c) KIne.at.s
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4- -p

PO
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riq. 12 Load-deforuatioo curves for Circular plate.

(iD. 13 Bleven-bar tru e.

.................................. ..
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